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Semantics-Space-Time Cube: A Conceptual
Framework for Systematic Analysis of Texis
in Space and Time

Jie Li*¥, Siming Chen, Wei Chen

, Gennady Andrienko ™, and Natalia Andrienko

Abstract—We propose an approach to analyzing data in which texts are associated with spatial and temporal references with the aim
to understand how the text semantics vary over space and time. To represent the semantics, we apply probabilistic topic modeling.
After extracting a set of topics and representing the texts by vectors of topic weights, we aggregate the data into a data cube with the
dimensions corresponding to the set of topics, the set of spatial locations (e.g., regions), and the time divided into suitable intervals
according to the scale of the planned analysis. Each cube cell corresponds to a combination (topic, location, time interval) and contains
aggregate measures characterizing the subset of the texts concerning this topic and having the spatial and temporal references within
these location and interval. Based on this structure, we systematically describe the space of analysis tasks on exploring the
interrelationships among the three heterogeneous information facets, semantics, space, and time. We introduce the operations of
projecting and slicing the cube, which are used to decompose complex tasks into simpler subtasks. We then present a design of a
visual analytics system intended to support these subtasks. To reduce the complexity of the user interface, we apply the principles of
structural, visual, and operational uniformity while respecting the specific properties of each facet. The aggregated data are
represented in three parallel views corresponding to the three facets and providing different complementary perspectives on the data.
The views have similar look-and-feel to the extent allowed by the facet specifics. Uniform interactive operations applicable to any view
support establishing links between the facets. The uniformity principle is also applied in supporting the projecting and slicing operations
on the data cube. We evaluate the feasibility and utility of the approach by applying it in two analysis scenarios using geolocated social
media data for studying people’s reactions to social and natural events of different spatial and temporal scales.

Index Terms—Spatiotemporal visualization, semantic visualization, data cube, interactive exploration, visual analytics

1 INTRODUCTION

ATA cube [1] is a widely used metaphor representing

organization of data along some dimensions of inter-
est. For organizing and analyzing data that include texts
with temporal and spatial references, such as geolocated
social media posts (Fig. 1), we introduce a structure called
Semantics-Space-Time Cube, or SSTC. In this structure,
three dimensions correspond to (1) semantic categories, or
topics, (2) locations (which may be regions in space), and (3)
times (which may be time intervals). To understand how
the text semantics varies over space and time, one needs to
explore the complex and diverse relationships between the
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three heterogeneous information facets. Examples of such
complex relationships are the spatial distribution of the text
topics, temporal trend of topic popularity, spatio-temporal
dynamics of topic appearance, etc. Our goal is to support
the overall analysis task by visual analytics techniques that
would not be too complex and difficult to use despite the
complexity of the data and task.

For achieving this goal, we consider two problems. The
first is how to construct the cube, in particular, how to rep-
resent text semantics in a summarized way suitable for
being used as one of the cube dimensions. The second prob-
lem is how to utilize the cube structure and take advantage
of it for supporting visual exploration of the data.

A common way to summarize text semantics is probabi-
listic topic modeling [2]. However, the existing techniques
do not work well on short texts. Besides, extracted topics
may have ambiguous meanings or vary greatly when
parameters are slightly changed. Therefore, meaningful
topics can hardly be extracted fully automatically, without
human intervention. Our approach to solving these prob-
lems involves aggregation of short texts into larger docu-
ments and interactive selection of representative topics
from results of multiple topic models using a visualization
that reveals topic similarities and redundancies.

The problem of visual exploration of text-space-time data
is challenging due to the high heterogeneity. The data com-
ponents (texts, space, and time) differ extremely in their
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I LOVED how the fireworks display was all about

space text

UK PM Theresa May’s new year message: I'll
fight remainers’ case in Europe, too.

We really value care workers and nurses from
abroad who are helping to support old folk

I've heard all this before, which is how | knew
Trump would win. Espec after the same shit was
spouted in the run up to Brexit.

Japanese banks ‘will begin leaving UK’ in six
&=————1 months over Brexit fears

time
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 1. Using geolocated Twitter data as an example to illustrate the tar-
get data structure. Each tweet is a text posted at some location and time
moment.

nature and properties. Such data cannot be treated as usual
multidimensional data for which numerous analysis and
visualization techniques exist. For example, in a parallel
coordinates plot, multiple attributes are represented in a uni-
form way. In the case of heterogeneous structures, data com-
ponents need to be visualized in different ways depending
on their specific nature. While it is possible sometimes to
show two components within one display (as in a space-time
cube), this can hardly be done with three or more highly
diverse components. One needs to use a combination of dif-
ferent displays and rely on interactive operations for uncov-
ering and exploring relationships between them. Such a
combination of visual and interactive tools is inevitably
more complex than a single display and may be very difficult
to use. A design challenge is to reduce the complexity and
difficulty while providing sufficient functional power and
enabling flexibility in exploration. To address this challenge,
we, first, consistently utilize the SSTC metaphor and con-
cepts of projection and slice, second, use similar organization
principles for specific displays of the three diverse compo-
nents and, third, propose a set of interaction operations uni-
formly applicable to each component.
Our main contributions are the following:

o A scheme of data transformation enabling systematic
exploration of text semantics in space and time;

e Use of a cube metaphor for organizing data, defining
the system of exploratory tasks, and designing the
user interface and interactive operations;

o A workflow for analyzing text-space-time data, which
involves characterization of text semantics through
human-controlled topic modeling and interactive
visual exploration of multifarious relationships bet-
ween the text semantics, space, and time;

e A combination of wvisual and interactive tools that
support the variety of exploratory tasks. The tool
design implements the principles of structural,
visual, and operational uniformity for reducing the
UI complexity.

The paper is structured as follows. After introducing the
problem statement (Section 2), we review the related work
(Section 3), present our approach (Section 4), describe and
substantiate our visual design (Section 5), and demonst-
rate the application of the approach in two case studies

(Section 6). Expert feedback is presented in Section 7,
followed by a discussion and conclusion in Section 8.

2 PROBLEM STATEMENT

We describe the structure of the data we are dealing with,
introduce the cube metaphor, and define the system of tasks
on exploring relationships between text semantics, space,
and time.

2.1 Data

The original data format is < text, location,time >. Loca-
tions can be specified by coordinates or names of geographi-
cal places. Texts are arbitrary and unstructured. It is
necessary for analysis to represent text semantics in a struc-
tured way. We assume that text semantics can be character-
ized using a finite set of topics (themes) of interest. For each
text, it can be determined how much it is related to each
topic. The degree or the likelihood of relatedness can be
expressed numerically, e.g., as a number between 0 (unre-
lated) to 1 (uniquely related). We shall call this number fopic
weight. Hence, each text is represented by a vector of topic
weights TWV =< wy,wy,...,wy >, where N is the num-
ber of topics considered. The data structure is thus trans-
formed to < TWV, location, time > .

2.2 Cube

We aggregate and organize the data so transformed along
three dimensions comprising the topics, locations, and times,
denoted P (to P ics), S (S pace), and T (T ime), respectively.
The Cartesian product P x S x 1" is metaphorically called
semantics-space-time cube. For practical purposes, all three
sets P, S, and 1 need to be discrete and finite. The set of
topics P is discrete and finite by construction. The space and
time are discretized by partitioning into suitable regions and
time intervals, respectively. Any combination (p, s,t) com-
posed of a particular topic p € P, location (region) s € .S, and
time interval (also called time step) t € T will be called a point
of the cube. For each cube point (p, s,t), we derive several
measures from the data, which include

e the popularity score of the topic p at location s during
time ¢, which is calculated as the mean weight of this
topic in the messages that were posted at location s
during time ¢ [3];

e a keyword vector consisting of pairs < keyword,
weight >, where weight is a numeric measure that
can represent the importance of the keyword in the
topic p at location s during time ¢.

The resulting data structure is P x S x T — (PS, KW),

where PS and KW stand for the Popularity Score and the
Keyword Weight vector, respectively.

2.3 Slices and Projections

The overall analysis task is to explore the variations of the
popularity and keyword usage along the three dimensions
of the cube. However, the high dimensionality of the struc-
ture P x S x T does not allow seeing the entire variation,
which requires the overall task to be decomposed into sim-
pler subtasks. The whole variation can be viewed as a func-
tion of multiple variables and the analysis task as the task of
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space’slicé

time slice

topic slic

(a) Space x Topic (b) Topic x Time (c) Time x Space

(Time slice) (Space slice) (Topic slice)
Spaeé Space /
Topic I
Topic Tidne i ) Topic
. Spate

(d) Space x Topic
(aggregation on Time)

(e) Topic x Time
(aggregation on Space)

(f) Time x Space
(aggregation on Topic)

Fig. 2. Results of selection and aggregation operations are symbolically
represented as slices (a-c) and projections (d-f) of the cube.

studying the behavior of this function [4]. The overall
behavior can be studied by considering its slices, in which
the value of one variable is fixed for exploring the variation
over the remaining variables. Using the cube metaphor, a
behavior slice corresponds a cutting plane in the cube that
is parallel to one of its faces (Figs. 2a, 2b, and 2c).

Multiple slices corresponding to different values of one
variable can be aggregated by putting these values together
and applying some summarizing operators (sum, mean,
mode, quartiles, etc.) to the respective values of the func-
tion. This is done for each combination of the values of the
other variables. The result is called a projection, because it
can be metaphorically seen as a projection of the cube con-
tent onto one of its faces (Figs. 2d, 2e, and 2f). The data
structure of a projection is the same as in the slices from
which it was obtained whereas the values within this struc-
ture are aggregates of the values from the slices.

According to the functional view of data and tasks [4],
we shall use a formal notation based on the representation
of the cube as P x S xT — (BS, KW), which also repre-
sents the overall analysis task: how PS and KW vary over
the whole set P x S x T. The measures FS and KW are
independent of each other, the variation of each of them can
be explored separately, resulting in two subtasks
PxSxT— PS and P xS xT — KW. In the following,
we shall consider both subtasks in a generic way using the
notation P x S x T'— M, where M represents PS, KW, or,
generally, any other meaningful measure that can be
defined and calculated from the data. Fore example, one
may apply sentiment analysis [5] to calculate the fractions
of the texts with positive, neutral, and negative expressions
concerning the topics.

The selection operation takes a slice in the cube corre-
sponding to one selected value within one dimension
(Figs. 2a, 2b, and 2c). The corresponding analysis tasks are
thus conducted within the slice to address the variation of
the studied measure over the “plane” formed by the combi-
nations of the values from the two other dimensions. The
possible types of analysis tasks based on cube slices are:

o t— (PxS— M) - for a selected time step t €T,
study the commonalities and differences among the
spatial distributions of the measures of different topics.

e s— (PxT— M) - for a selected location s¢€ S,
study the measures of different topics and their
changes over time;

e p— (SxT — M) - for a selected topic p € P, study
the variation of the measure over space and time;

The aggregation operation creates a projection of the cube

content along one dimension (Figs. 2d, 2e, and 2f). Aggrega-
tion can be applied not only to the set P, S, or T" as a whole
but to a subset of it. Possible analysis tasks address the varia-
tion of the summary values over the projection plane. The
task types can be defined analogously to the slice-based tasks:

e 2(T)— (PxS— M) - for all times taken together,
study the commonalities and differences among the
spatial distributions of the aggregate measures of
different topics.

e 3(S)— (PxT — M) - for all locations taken
together, study the variation of the aggregate meas-
ures of different topics over time;

e 3(P)— (8xT — M) - for all topics taken together,
study the variation of the aggregate measures over
space and time;

2.4 Analysis Tasks

Both slice-based and projection-based tasks address the vari-
ation of some measure over a “plane”, i.e., a Cartesian prod-
uct of two dimensions. Let us represent such variation in a
general way as a function X x Y — Z. It can be explored in
two complementary ways [4]:

e Consider the variation of the function ¥ — Z over
the set X, represented as X — Y — Z. Thus, for
S x T — PS,itis “consider how the temporal evolu-
tion of the topic popularity varies over the space”:
S—T— PS.

e Consider the variation of the function X — Z over
the set Y, represented as Y — X — Z. Taking the
example of S x 1" — PS, it is “consider how the spa-
tial distribution of the topic popularity changes over
time”: 7' — S — PS.

Using this general schema and treating slice- and

aggregation-based tasks in a uniform way, we define the
following system of task types:

e Tasks based on time slices ¢ — (P x S — M) or time
projection 3(T) — (P x S — M):
- T1: S — P — M, e.g., which topics were popular
at different locations
- T2: P— §— M, eg., where did different topics
receive more attention
e Tasks based on space slices s — (P x T — M) or
space projection %(S5) — (P x T'— M):
- T3: P—T — M, eg., when and how long were
different topics popular
- T47T — P — M,e.g., how did the relative popu-
larities of the topics differ among the times
e Tasks based on topic slices p — (S xT — M) or
topic projection %(P) — (S x T — M):
- T5:5 - T — M, e.g.,, what are the temporal vari-
ation trends at different locations
- T6:T — S — M, e.g., how does the spatial distri-
bution of the measure change from time to time
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Furthermore, there may be tasks on comparing the varia-
tions in two or more slices. Hence, each task type T1-T6 in
application to slices can be split into two subtypes, behavior
characterization and behavior comparison [4]. To keep the pre-
sentation simpler, we shall not introduce additional formal
representations for slice comparison tasks, but it should be
kept in mind that the task types T1-T6 cover both characteri-
zation and comparison tasks.

2.5 Design Goal

Our goal is to design and implement such an approach to
supporting all the defined tasks that all the tasks could be ful-
filled in a possibly uniform way. The reason for striving
towards the uniformity is a desire to make the whole explo-
ration process easier for the analyst. Since the overall analy-
sis task has to be decomposed into multiple diverse
subtasks, a possibility to perform these subtasks in similar
ways can reduce the cognitive effort required for learning
and remembering the functionality provided.

3 RELATED WORK

The related research includes works in visual analytics and
cognate disciplines that (1) apply topic modeling to repre-
sent text semantics, or (2) deal with data having textual, spa-
tial, and temporal components, or (3) utilize different
variants of data cubes for supporting data analysis, or (4)
use cubes to represent data visually. This section is struc-
tured according to these four themes.

3.1 Topic Modeling in Visual Analytics

Probabilistic topic modeling [6] is a class of natural lan-
guage processing methods that are used for obtaining a
structured representation of collections of texts. From a
given text collection, these methods extract a set of of
latent topics, where each topic is a probability distribu-
tion over words of a chosen base vocabulary. The texts
are represented by vectors of topic probabilities, or
weights [2]. Examples of topic modeling methods are
Latent Dirichlet Allocation (LDA) [2] and non-negative
matrix factorization [7].

Topic modeling has been widely used in visual analytics
works focusing on text analysis [8], [9], [10]. Texts from
social media have received much attention [11], [12]. In
Recompile 3 particular, researchers have focused on evolu-
tion of topics and their relationships. Xu et al. [13] proposed
an topic competition model to characterize the competition
for public attention on multiple topics. Sun et al. [14]
extended this model for analyzing both competition and
cooperation relationships among different topics in social
media. Wang et al. [15] proposed a visual analytics system
for analyzing the topic transmission between different social
groups. Dou et al. [16] supported exploration of hierarchical
relationships among topics. Cui et al. [17] focused on
dynamic hierarchical relationship among topics in different
time periods.

While a large body of research has been done on analyz-
ing text topics over time, we are not aware of works that
would consider the relationships of topics to a more com-
plex spatio-temporal context. Our work makes the first step
in this direction.

3.2 Exploration of Texts in Space and Time
ThemeRiver [18] is perhaps the best known technique to
visualize changes of text semantics over time. Themes
extracted from texts are represented along a time axis by
bands (“currents”) with the widths proportional to the topic
strengths. Since the first publication, the idea was actively
used and adapted to a variety of tasks, such as analysis of
opinion diffusion [19] and anomalous information spread-
ing [20]. Liu et al. [21] combine the metaphors of river and
sedimentation to show older data in aggregated form and
more recent in detail. Since ThemeRiver has proved its
effectiveness and gained high popularity, we used this idea
in our time view display.

In the visual analytics research dealing with spatially and
temporally referenced text data, such as geolocated social
media posts, many works have been focusing on keywords
occurring in the texts. The simplest approach is to extract a
subset of data containing occurrences of specific keywords
and analyze the spatio-temporal distribution of the selected
data, particularly, to detect spatio-temporal clusters [22],
[23], [24]. In these works, interactive visual analysis is
applied only to the spatial and temporal aspects of the data.

Another approach is to process the texts for detecting
references to events, i.e., occurrences at specific times and
places. Events are identified from groups of texts mention-
ing the same places and same or overlapping times [25].
Markus et al. [26] detect events from peaks of high tweeting
activity and meaningfully label them using keywords from
the tweets. Zhou and Xu [27] identify events using bursty
word detection techniques from machine learning. Chae
et al. [28] identify abnormal events using seasonal-trend
decomposition. After extracting the events, their relation-
ships to space and time are explored visually using map-
and time line- or calendar-based displays whereas the texts
related to the events are summarized into word clouds [29],
[30], [31]. Additionally, the sentiments of event-related texts
can be visually explored [26], [27].

Bosh et al. [32] proposed a system ScatterBlogs for visual
detection of events based on multiple occurrences of the
same keyword in messages posted at nearby places and
times. Such keywords are shown on a map at the places
where they occurred using font sizes proportional to the
number of occurrences. ScatterBlogs2 [33] extends Scatter-
Blogs by adding sophisticated tools for text filtering, so that
the visual analysis is applied to previously selected poten-
tially relevant texts, such as texts mentioning natural disas-
ters. Chae et al. [34] propose tools for analyzing the spatio-
temporal distribution of Twitter users based on the loca-
tions and times of the posted tweets. For a detected spatio-
temporal cluster of Twitter users, the analyst can run topic
modeling on the posted tweets and see the extracted topics
represented by a word cloud, which can provide a hint con-
cerning the event that caused the people to convene.

A common feature of all these works is their focus on
exploring extracted events rather than texts with their
semantics. A different focus is taken by Cao et al. [35]: they
propose a visualization that shows re-postings of messages
mentioning specific events for exploring the diffusion of
information through social media. However, like the other
works, this work does not address the variation of text
semantics over space and time.
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There was a case study in which the spatial and temporal
distributions of text topics were explored separately [36].
The researchers created a predefined set of topics, such as
"'work’, “transport’, "food’, 'sport’, etc., and specified a list of
relevant keywords for each topic. Twitter posts were associ-
ated with the topics through detecting keyword occur-
rences. Based on the posting times, the researchers explored
the distribution of each topic over the daily and weekly
time cycles; based on the tweet locations, they explored the
distribution of the topics over the territory of a city. The
research goal was to investigate to what extent the social
media reflect people’s current activities, which is an exam-
ple of a specific analysis task. The researchers neither
intended to define the full space of tasks nor proposed a sys-
tem or framework for systematic support of the tasks.

3.3 Data Cube

Data cube [1] is a model for organizing multidimensional
data designed to support OLAP (On-line Analytical Process-
ing) queries. For constructing a cube, some data fields (attrib-
utes) are chosen as dimensions and others as measures. For
each combination of values of the dimensions, the cube con-
tains corresponding measures. In OLAP, hierarchical aggre-
gation is applied to the dimensions, and the corresponding
aggregated measures, such as sum, average, count, etc., are
pre-calculated and stored. The model has been used and
adapted to represent datasets in different domains, such as
social media [37], traffic [38], and graph analysis [39]. More
recently, several approaches, such as NanoCubes [40],
Hashedcubes [41], Gaussian Cubes [42] and Time Lattice
[43], have been proposed for performing specific types of
tasks on large datasets. These works focus on optimizing the
data structure to enable real-time response to interactive
operations, whereas our focus is supporting the exploration
of various relationships among dimensions.

Most commonly, cells in a data cube contain numeric val-
ues. In Text Cube [44], which aims to support OLAP queries
on multidimensional datasets with text fields, the cells con-
tain unstructured texts. Zhang et al. [45] construct a Topic
Cube using a hierarchy of topics obtained through text analy-
sis. The topics form one of the cube dimensions while the
others may consist of spatial locations, dates, and times (day
or night). The cube cells contain two kinds of measures,
namely, word distribution of a topic and topic coverage by
documents. This structure is similar to what we use. While
Zhang et al. focus on efficient construction of the topic cube
and support of OLAP queries, our focus is enabling visual
exploration of relationships between topics, space, and time.

3.4 Space-Time Cube as a Concept and a
Visualization Technique

The idea of SSTC resembles the concept of space-time cube
(STC), which was introduced by T. Hagerstrand [46] in late
60s as a metaphor for representing human behavior in geo-
graphic space and time. The space is represented by two
dimensions of the cube and time by the third dimension.
This idea was implemented as a visualization technique
for exploring the spatio-temporal distribution of discrete
objects, such as events [47] and trajectories [48], [49]. Bach
et al. published a review of visualization applications based
on STC [50]. Amini et al. [51] conducted an experiment on

(b) Cube Creation C) Measure Calculation
. == Covumerifei  pe S8 MeyerSe
Topic Extraction Topic Selection ] s B, ‘"
(Form topic set) Lal M i
Time Discretization -
(Form time step set) 2
] Lo |

. T
D ey DS Calculate two measures, e, popularity score and
@ Interactive editing (Form location set) keyword vector for each ;Sonnt of Cube

[

Original Data Interactive Exploration

goes

Text

(a) (d)

s,
e

Data Selector

e mlala

Space Time Relationship Explorer

Fig. 3. Data processing and analysis workflow.

the use of interactive 2D and 3D displays of trajectories and
found that the 3D display outperformed the 2D one for
some tasks and was also liked more by the participants.

The STC technique can work well for representing
objects that are either sparsely spread within the cube or
grouped in clusters, which collectively occupy only a small
fraction of the cube volume. In other cases, distribution pat-
terns can hardly be identified due to occlusion. Diibel
et al. [52] systematically discuss the advantages and disad-
vantages of 2D and 3D visualizations of spatial and spatio-
temporal data. General disadvantages of 3D displays are
occlusion, distortion, and difficulty of matching objects to
their spatial locations, but 3D views may still be good for
exhibiting clusters and some other kinds of distribution.

There were also attempts to use STC for representing
spatial time series (e.g., [53, pp.107-108)), i.e., data in which
some attribute value exists for each combination of location
and time step. Such data can be shown reasonably well in
an STC only when there are relatively few distinct locations,
the time series are not very long, and small attribute values
are hidden. Even under these conditions, the display
involves much occlusion, and it may become fully ineffec-
tive when these conditions do not hold.

The SSTC differs from the STC by including a semantic
dimension composed of topics. As a data structure, SSTC
does not reflect the inherent dimensionality of the spatial
component, the space being represented as a set of discrete
locations, which forms a single dimension of the cube. How-
ever, this does not imply that the visual representation of the
spatial component must also be unidimensional. On the
opposite, the visual representation must respect the inherent
properties of the spatial component and look familiar and
understandable to the user. This means that the locations
need to be represented on a map. Consequently, we cannot
create a single display representing simultaneously the spa-
tial, temporal, and thematic dimensions of the SSTC. Instead,
we must use a combination of partial views, which, in princi-
ple, may be 2D or 3D. The disadvantages of 3D views [52] are
very relevant to our data structure, in which, similarly to spa-
tial time series, a measure exists for each combination of loca-
tion, time step, and topic; hence, the cube is fully filled with
values. Therefore, our logical choice is 2D displays.

4 APPROACH OVERVIEW
4.1 Workflow

We propose an analytic workflow presented in Fig. 3. The
original data available in the form < text, location, time >
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TABLE 1
An Example of LDA Result

=]
Q.
o
X

keywords

scotland, deal, brexiteers, indyref, means, talks
economy, money, pound, due, market, vote, property
euref, leave, vote, referendum, remain, eureferendum
nhs, love, peace, france, freedom, irexit, frexitl
brexitshambles, article, theresamay, nobrexit, court
remain, brexitbritain, lies, brexiters, campaign

post, postbrexit, impact, trade, future, great

trump, world, people, time, america, election, wrong
stopbrexit, manchester, march, grexit, exitfrombrexit
10 ireland, english, trndnl, gmt, brexitbill, northern

11 bbc, read, latest, post, blog, blair, interview

12 hate, people, britain, brexiteers, price, racist

O XU WN =

(Fig. 3a) are transformed, as explained in Section 2.1,
into the form <TWYV, location, time > suitable for cube
construction. The transformation (Fig. 3b) involves defini-
tion of discrete finite sets of topics, locations, and time steps.
The set of topics is obtained using the LDA (Latent Dirichlet
Allocation) method applied after basic text preprocessing
including stop-word elimination and lemmatization. The
sets of locations and time steps are defined through discreti-
zation of space and time. The next step is construction of
the cube (Fig. 3c), which involves calculation of the topic
popularity and keyword weights for each point of the cube
(see Section 2.4). The resulting cube is then explored using
visual and interactive techniques (Fig. 3d).

4.2 Cube Creation
Cube creation involves definition of the cube dimensions,
i.e., the sets of topics, locations, and time steps, and cal-

culation of the measures for each point in the cube (see
Sections 2.1 and 2.4).

4.2.1 Topic Extraction

We employ Latent Dirichlet Allocation (LDA) [2], a pro-
babilistic topic modeling method that is often used to
summarize vast amounts of texts. A topic is defined as a
probability distribution over a given vocabulary, ie. a
set of keywords, where keywords with high probabilities
represent the semantic content of the topic. Apart from the
topic-keywords distributions, an LDA model also produces
document-topics distributions consisting of the probabilities
of each document to be related to each topic.

The LDA model does not work well on short texts [54]. A
simple but popular way to alleviate the problem is to aggre-
gate short texts into longer pseudo-documents [55], [56],
[57]. The texts that are merged into a single document
should be semantically related. Texts posted in social media
usually contain hashtags, and the use of the same hashtags
can be treated as indication of semantic relatedness of the
texts. However, the meanings associated with the hashtags
may change over time. We therefore aggregate messages
that not only have common hashtags but also have close
times of posting. The effectiveness of this approach has
been proven in our previous work [3].

Table 1 shows representative keywords of topics extra-
cted from a dataset of tweets related to Brexit that were

posted in Britain from March 2016 to October 2017. During
that period, the Brexit was a hot discussion topic in the Brit-
ish society. The keywords in each topic are sorted according
to their weights (i.e., probabilities) for the topics. Since each
list begins with a different keyword, these most important
keywords can be used as topic representatives.

Since we apply the LDA method to pseudo-documents
obtained by aggregation of the original documents (i.e.,
short messages), it generates the topic probability distribu-
tions for the pseudo-documents. We propagate these distri-
butions to the original documents in the following way. If a
document has been included in a single pseudo-document,
it receives the topic probability distribution of this pseudo-
document. If a document has been included in several
pseudo-documents, the corresponding topic distribution
vector is composed of the mean probabilities of the topics
computed from the probabilities for the pseudo-documents.

4.2.2 Topic Selection

The LDA and other topic modeling algorithms require set-
ting the number of topics to generate, which is a parameter
of the algorithms. It may be very hard to estimate how many
meaningful and distinct topics may exist in a text collection.
The choice of the parameter value may have high impact on
the result. Some topics can only be found with specific values
of the parameter, and even a slight change of the value may
lead to extracting a very different set of topics [28].

To reduce the effects of the parameter value choice and
be able to compare topics generated with different parame-
ter setting, we utilize an ensemble-based approach. We run
LDA multiple times with different parameter values, e.g.,
n € {10, 20, 30,40}. We then create a visual display by pro-
jecting all extracted topics on a 2D plane according to their
keyword probability distributions by means of a dimension-
ality reduction method, such as t-SNE [58] or MDS [59]. The
topics are represented by points labeled by the keywords
with the highest probabilities. Longer keyword lists, as in
Table 1, are shown upon mouse-hovering. In this display,
very similar topics resulting from different runs will have
very close positions.

The topic projection display is used for selecting a topic
set for the cube construction. The selected topics should be
semantically diverse; therefore, from a group of close topics,
it is sufficient to pick a single topic. Furthermore, the analyst
may find some topics uninteresting, or vague, or irrelevant
to the analysis goals; such topics do not need to be included
in the cube.

4.2.3 Space and Time Discretization

Generally, the spatial and temporal domains are continuous.
Since cube construction requires discrete sets of locations
and time steps, the space and time need to be discretized. In
some applications, predefined space divisions can be suit-
able, such as administrative division into countries, provin-
ces, cities, etc. Other possibilities for space discretization
include regular division by rectangular or hexagonal grid or
irregular tessellation based on the spatial distribution of the
data [53]. In studies of human mobility behavior, it is often
appropriate to use individual and public activity locations
that can be extracted from long-term data [60].
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Topic Set
P = (p1, P2, - Pr)

Keyword Set
K = (ki kg, oo kq)

Document Set
D = (dy,dy, i)

PS(p,s,t) = Z Vap
deD(s,t)

All documents in D(s, t) are
posted at (s, t)

kw(p,s,t) = PS(p,s,t) X vy
kw(p,s, t) is the weight of keyword
k at(p,s,t)

(a)

Fig. 4. lllustration of the calculations of the popularity score and the key-
word weight vector.

Topic-Keyword
Distribution

(b)

Document-Topic
Distribution

The temporal domain is partitioned into suitable inter-
vals. It is desirable to define the intervals based on calendar
units, such as months, weeks, or days, or, when a finer tem-
poral granularity is needed, hours of the day. Such intervals
are meaningful to humans. For example, in Fig. 6, the loca-
tion set consists of the important cites of Britain, and the
time period is divided into weeks.

It is possible to use a sliding window along the time axis
for considering overlapping time intervals, for example,
intervals of the length 1 week with a shift of 1 day.

4.3 Measure Calculation

We calculate the popularity score and keyword weight vec-
tor, as defined in Section 2.4, for each point (p, s,t) in the
cube. For this purpose, we utilize the document — topic and
the topic — keyword distribution outputs of the LDA model,
as shown in Fig. 4.

In the document — topics distribution, the sets of docu-
ments and topics form a bipartite graph, where each edge
represents the probability of a document being related to a
topic. Similarly, the topic — keywords  distribution can be
seen as a bipartite graph where the edges represent the key-
word weights for the topics, as in Fig. 4b.

To calculate the popularity score PS(p, s,t) for the point
(p, s,t), we collect all documents that were posted at s and ¢,
thus forming a document subset D(s,t), and calculate the
sum of their weights on the topic p. Using Fig. 4b as an
example, two documents are posted at s and ¢ (marked with
light blue shade), thus the popularity score for the point
PS(p, s, t) is the sum of the weights of the two documents
on the topic p (the red lines). We multiply PS(p,s,t) by
the weight of each keyword for the topic p (obtained from
the LDA model) to obtain kw(p,s,t), which represents the
prominence of keyword k at the point (p, s,t), as in Fig. 4a.
If a topic has a high popularity at a point and a keyword
has a high weight for the topic, the prominence (weight) of
the keyword at this point is high.

4.4 Interactive Exploration

The interactive exploration of the data organized in the cube
is supported by two components, Data Selector and Relation-
ship Explorer. Their functions are described below whereas the
visual design is described in detail in the following section.

4.4.1 Data Selector

The analyst may not necessarily need to deal with the whole
cube at each moment of the analysis. Only a subset of the

topic space distribution
Z topic ky K,
t p] V]J VJm
I time 0, Var v

Va
s z‘:}g distribution Pn Vi1 Vi

o
space keyword space
(a) (b)

Fig. 5. Feature vector selection. (a) Each object, i.e., location, time step
and topic, can be projected according to the distribution of the corre-
sponding measures over one or two other dimensions. (b) The feature
vectors that are used for the initial topic selection (Section 4.2.2).

topics, or locations, or time intervals may be relevant to the
current analysis focus. The Data Selector supports the selec-
tion of relevant subsets of topics, locations, and/or times.
This defines a sub-cube of the whole cube. The subsequent
exploration is done on the sub-cube; the remaining part of the
cube is not reflected in the visual displays. The analyst can
modify the selection atany moment in the process of analysis,
when it is necessary to consider another subset of the data.

To define a sub-cube for further exploration, the analyst
separately selects subsets of topics, locations, and times.
The selection is supported by an interactive visual display
that informs the analyst about the similarities between the
elements of the currently considered dimension. This is
done by projecting the elements onto a 2D plane according
to their similarities by means of an appropriate multidimen-
sional reduction algorithm, such as t-SNE [58] or MDS [59].
The approach is the same as is used for the initial topic set
selection (Section 4.2.2); however, different feature vectors
are used. For the initial topic selection, the feature vectors
were the keyword probability distributions. In this case, the
feature vectors are constructed based on the cube structure.
For an element of the currently considered dimension, the
feature vector may be composed from the values lying
within the corresponding slice (Figs. 2a, 2b, and 2¢). Such a
vector represents the distribution of the measures corre-
sponding to the element over the other two dimensions.
Another possibility is to define a feature vector based on the
projection of the cube content along one of the two other
dimensions (Figs. 2d, 2e, and 2f). Such a vector represents
the distribution of the aggregated measures over the
remaining dimension.

Hence, the topics can be laid out in a projection based on
the distributions of the corresponding measures over time
and/or space, the locations can be laid out based on the dis-
tributions of the corresponding measures over topics and/or
time intervals, and the time intervals can be laid out accord-
ing to the distributions of the corresponding measures over
the topics and/or locations. Fig. 5a illustrates the construc-
tion of the feature vectors, and Fig. 5b shows the structure of
the feature vectors used for the initial topic selection.

4.4.2 Relationship Explorer

The Relationship Explorer enables exploration of the data
contained in the selected sub-cube. It represents the data
distributions along the three cube dimensions, space, time,
and topics. Interactive operations enable the analyst to see
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Fig. 6. The visual interface designed for analyzing data involving spatial, temporal, and semantic facets includes two components: Data Selector (g)
provides a data overview and enables selection of interesting subsets for exploration. Relationship Explorer (a-f) provides three perspectives on the
data based on the facets and supports establishing links among the facets.

various relationships existing among the distributions. The
component is described in detail in the following section.

5 VISUAL DESIGN

In designing the visual interface (Fig. 6), we strove to restrict
its complexity and difficulty for learning and use notwith-
standing the complex structure of the data dealt with. To
moderate the complexity, we developed an idea of design
uniformity, which is explained below.

5.1 Design Uniformity Principle

The visual interface needs to represent three heterogeneous
dimensions of the data, space, time, and topics, and the cor-
responding measures, i.e., topic popularity and keyword
weight vector. The representation of the dimensions needs
to reflect their inherent properties, particularly, the geo-
graphic arrangement of the locations and the linear order-
ing of the time intervals. As discussed in Section 3.4, all
three dimensions cannot be suitably represented in a single
view. We have to use several complementary views, and 2D
representation is preferred over 3D. Based on these prem-
ises, we come to the necessity of using three views, spatial,
temporal, and topical. The first two reflect the inherent
properties of the space and time, respectively, and the third
reflects the composition of the topical dimension from dif-
ferent topics.

The idea of uniformity means similar appearance of the
three views and similar ways of interacting with them. The
implementation of this idea involves several aspects as dis-
cussed below.

Structure Uniformity (SU). We want the views to have a
similar structure, i.e., similar layouts of display elements or
components. The temporal view has to have a linear layout
for reflecting the inherent linear ordering among the time

intervals. For consistency, we adopt a linear layout also for
the other two components. Specifically, we represent topics
in the topical view by linearly arranged components, called
‘cards’, showing topic-specific information. Correspond-
ingly, the spatial view includes multiple linearly arranged
cards, which contain geographic maps to reflect the specifics
of the spatial facet. Unlike the other two facets, time is a con-
tinuous succession of time intervals. This inherent feature is
reflected in representing data by continuous curves or
shapes, which is unique for the temporal view. Hence, the
views are structurally similar to the extent allowed by the
inherent properties of the data facets they represent, but
they also have unique features reflecting the specifics of
these facets.

Visual Style Uniformity (VU). The use of colors, fonts,
labeling, highlighting, and other kinds of visual marks and
variables need to be consistent between the views. Similar
elements must have similar meanings irrespective of the
views in which they appear.

Interaction Uniformity (IU). Since the representation of the
data is decomposed into three views, interactive operations
are required for establishing links among the views and
exploring the distribution of the measures across the dimen-
sions. The same interactive techniques need to be available
in all views, and their implementation must be consistent
between the views.

Operation Uniformity (OU). As discussed in Section 2.3,
the task of studying the overall data distribution is decom-
posed into simpler subtasks dealing with data cube slices
and projections. In the process of exploration, the analyst
should be able to choose slices and projections to consider
next. The analyst may also wish to restrict the further explo-
ration to a sub-cube of the data (Section 4.4.1). In supporting
the selection of sub-cubes, slices, and projections, the cube
dimensions should be treated uniformly. Furthermore, the
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Fig. 7. Visual design of (a) location card and (b) topic card. The card
labels are colored according to the positions of the respective location
and topic in the projection in the Data Selector.

(b)

choice of a perspective on the data (i.e., which dimension is
fixed or aggregated while the others preserve variation)
should not affect the structure and visual appearance of the
spatial, temporal, and topical views.

The use of the cube metaphor, in which space, time, and
topics are treated as uniform data dimensions, provides a
good basis for designing the Ul according to the uniformity
principle. In the following, we describe the resulting design.

5.2 Data Selector

The Data Selector enables selection of data sub-cubes for
further interactive exploration (Section 4.4.1). The controls
for sub-cube selection do not need to be present on the
screen constantly. They appear in a pop-up window trig-
gered by clicking on a special button.

The Data Selector (Fig. 6g) consists of three panels that
are integrated in a tab-control. The panels correspond to the
three dimensions of the cube. In each panel, the elements of
the respective dimension are arranged in a 2D layout reflect-
ing the similarities between the corresponding distributions
of the data over one or two of the remaining dimensions, as
described in Section 4.4.1. The dimensions to use are
selected through a drop-down list. The items shown in the
projection are labeled, depending on their nature, with the
location names, indexes of time steps, or dominant key-
words (i.e., having the highest weights for the topics). Colli-
sion detection and resolution are utilized to avoid overlaps
of the labels. Currently selected items are highlighted. The
projection background is colored using a continuous two-
dimensional color scale. The purpose of the coloring is
explained below.

Color Assignment. In the Relationship Explorer, we consis-
tently use colors for representing the same data items in dif-
ferent views. An arbitrary assignment of colors to elements
of a data dimension would result in using too many unre-
lated and uninterpretable colors, which complicated and
impedes perception and cognition due to the limited human
attention capacity [61]. To deal with this problem, colors
need to be assigned in a meaningful way. Following the
approach proposed by Landesberger et al. [62], we assign
colors to objects according to their positions in a projection
reflecting similarities between them. With this approach,
color similarity indicates object similarity.

5.3 Relationship Explorer
The Relationship Explorer (Figs. 6a, 6b, 6¢, 6d, 6e, and 6f)
shows the distributions of the data over the spatial,

temporal, and topical dimensions and enables the explora-
tion of relationships among these distributions. The main
views are the location view (Fig. 6a), time view (Fig. 6b), and
the topic view (Fig. 6¢) designed according to the uniformity
principle (Section 5.1). The projection/slice selector (Fig. 6d) is
used to define the current perspective on the data by select-
ing a projection or slice of the cube (Section 2.3). The history
panel (Fig. 6f) represents symbolically what perspective is
taken currently and what were taken before. Besides these
permanent components, the analyst may create temporary
pop-up windows representing the keyword weight vectors
for selected cube points (Fig. 6e).

5.3.1 Visual Encodings

The location view (Fig. 6a) includes a sequence of location
cards showing locations on a map (see Section 5.1-SU). A
location card is meant for comparing data at one location,
called current location, with data at the other locations. The
visual design of a card is shown in Fig. 7a. The card is
labeled by the name of the current location colored accord-
ing to its position in the projection in the Data Selector. A
time graph on top of the card shows the temporal variation
of the number of documents posted at the current location.
The location label is colored according to its position in the
projection in the Data Selector (Section 5.2). In the map, the
graduated circles represent the counts of documents posted
at the respective locations in comparison to the current loca-
tion using blue for lower values and pink for higher values.
The current location is marked with a star symbol.

Similarly to the location view, the fopic view (Fig. 6¢) con-
sists of topic cards, which follows the principle of structure
uniformity (Section 5.1-SU). The visual appearance of topic
cards (Fig. 7b) reflects the specifics of topics (which are,
essentially, vectors of keyword weights) whilst being con-
sistent with the appearance of the location cards, following
the principle of visual style uniformity (Section 5.1-VU).
The main component of a topic card is a word cloud com-
posed on the topic-related keywords. The font sizes are pro-
portional to the weights of the keywords for the topic. The
time graph on top of a topic card shows the popularity vari-
ation of the topic. Upon mouse-hovering on a topic card,
the keywords that occur in the cards of other topics
are highlighted. Simultaneously, these keywords are also
highlighted in all cards where they appear. This enables
comparing semantic contents of different topics.

The time view (Fig. 6b) includes narrow cards correspond-
ing to time intervals (Section 5.1-SU) and arranged in a chro-
nological layout reflecting the inherent ordering of the
elements of the time dimension. The time view has two
modes, compact and extended, see in Fig. 8. In the initial
(compact) mode (Fig. 8a), the cards contain multiple verti-
cally arranged bars, which may correspond to topics or loca-
tions. The bar colors correspond to the positions of the
respective items (i.e., topics or locations) in the projection in
the Data Selector (Section 5.2). The bar heights are propor-
tional to the respective popularity scores; the ordering from
top to bottom corresponds to the decreasing order of the
scores. One or more items can be selected for viewing the
variation of the respective popularity scores in more detail
in the extended mode. The bars representing the same
selected item in consecutive cards are connected to form a
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Fig. 8. Two modes of a time view representing 6 topics and 3 time cards.
(a) The compact mode. (b) The extended mode, in which the popularity
variation of two selected topics is represented by continuous streams.

continuous stream, as in Fig. 8b. This representation follows
the idea of the ThemeRiver display [18]. The heights of the
selected bars extend to use the majority of the vertical space,
while the unselected bars are squeezed into a line. The verti-
cal arrangements of all bars do not change to maintain the
popularity rankings.

The keyword view is a pop-up window showing the key-
word weights for selected cube points (i.e., combinations of
location, time, and topic), or aggregated keyword weights
for points on cube projections, or even more aggregated
weights for elements of a cube dimension (i.e., the values
are aggregated over the other two dimensions) (Fig. 9). The
information is shown in the form of word cloud with the
font sizes proportional to the keyword weights. The analyst
can open several such windows, which are linked through
interactive highlighting of the same keyword upon mouse-
hovering in one of the word clouds.

The history panel, as in Fig. 6f, symbolically shows the
currently chosen perspective of the data, i.e., whether it is a
slice or a projection and the kind of slice or projection. It
also shows the previous choices in the chronological order
from top to bottom and allows the analyst to re-visit the cor-
responding views through clicking on the icons.

5.3.2 Interactive Operations for Supporting Tasks

According to the uniformity principle (Section 5.1), we sup-
port all task categories T1 - T6 defined in Section 2.4 in a
uniform way (IU, OU). To conduct a task, the analyst starts
with selecting a projection or slice using the Projection

Fig. 9. Keyword views. (a-c): Views showing aggregated keyword
weights for elements in three dimensions, a location (a), a time interval
(b), and a topic (c). (d-f): Views showing aggregated data for points on
2D cube projections, time-topic (d), location-topic (e), and location-time
(f). (9): A view showing detailed data for a cube point, i.e., a combination
of location, time, and topic. The same keyword ‘leave’ is selected for
comparing its weights in the different views.

TABLE 2
Operations for Tasks
Task Projection Spatial List Time List Topic List
T1 T select s tor 3T pattern
T2 T pattern tor X7 select p
T3 S sor2S pattern select p
T4 S sor2S select t pattern
T5 p select s pattern porxP
T6 P pattern select t porxP

Selector. This defines a two-dimensional ‘plane’, and the
analyst’s goal is to explore the data distribution over this
‘plane’. Please note that the term ‘plane’ is used metaphori-
cally while the real data structure is more complex; there-
fore, the visual representation of the selected ‘plane’ is
decomposed into three views. The exploration is performed
through selecting objects in one view and observing the cor-
responding distributions in the other views.

Let us take the task X7 — (S — P — M) (T1) as an exam-
ple. The analyst takes the time projection, i.e., %7". Then the
analyst selects different locations s in the location view via
mouse clicking and observes the corresponding patterns in
the the topic view. The interactive operations for the six
tasks are summarized in Table 2. The term “pattern” for dif-
ferent tasks has the following meanings:

T1:1) The topics are sorted according to their popularities
at the selected location s; 2) a new topic card showing the
popularities of all topics at s is added, as shown in Fig. 10a
for s=Dublin and s=Glasgow. The word cloud in the new
card consists of the representative words of the topics.

12: 1) The locations are sorted according to the popular-
ities of the selected topic p; 2) a new location card that shows
the spatial distribution of the popularity of p is added, as
shown in Fig. 10b for p=‘scotland’ and p=‘ireland’
(‘scotland” and ‘ireland’ are the representative keywords of
the selected topics).

T3: For the selected topic p, the time view shows a contin-
uous stream representing the variation of the topic popular-
ity, as in Fig. 10c.

T4: A new topic card showing the popularities of all
topics at the selected time interval ¢ is added, as shown in
Fig. 10d for t=7 and ¢=27.

T5: For the selected location s, the time view shows a con-
tinuous stream representing the variation of p or 2P at s, as
in Fig. 10e.

T6: A new location card showing the spatial distribution
of the popularities of p or 3P at the selected time interval ¢
is added, as shown in Fig. 10f for ¢ € {54,55, 56, 57}.

As can be seen from the examples in Fig. 10, the analyst
can select two or more locations, topics, or time intervals for
performing comparison tasks within the categories 11 - T6.

The discussion presented above refers to the patterns of
the popularity scores. To explore the patterns of the keyword
weight distribution, the analyst generates and compares key-
word views for selected locations, topics, or times (Fig. 9).

6 CASE STUDIES

We have tested the utility of our approach on two case
studies based on social media posts related to social and
natural events.
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Fig. 10. Demonstration of fulfilling six types of tasks. (a)T1: Take the time projection and select locations to observe patterns in the topic view. (b) T2:
Take the time projection and select topics to observe patterns in the location view. (c) T3: Take the space projection and select topics to observe their
streams in the time view. (d) T4: Take the space projection and select time intervals to observe the topic patterns in the topic view. (e) T5: Take the
topic projection and select locations to observe their streams in the time view. (f) T6: Take a topic slice and select time intervals to observe the spatial

distributions in the location view.

6.1 Brexit Dataset

The term Brexit (https://en.wikipedia.org/wiki/Brexit)
refers to a much disputed plan of the United Kingdom to
leave the European Union. We used a dataset containing
about 380,000 tweets of more than 70,000 users posted dur-
ing 78 weeks from May 1, 2016 till October 29, 2017 collected
through the Twitter streaming API using a spatial query
with the bounding rectangles of the UK and Ireland. We
retrieved the tweets containing the keyword “brexit”, irre-
spective of the case, in the texts or hashtags and filtered out
the tweets with empty hashtag fields, as we use hashtags
for aggregating short texts into longer pseudo-documents
(Section 4.2.1). Before applying topic modeling, we con-
verted all texts to lower case. As explained in Section 4.2.2,
we ran LDA several times giving different values to the
parameter n (topic number): n = 10,20,30,40. From the
resulting 100 topics, we selected 16 non-redundant topics
having clear and relevant meanings (thus, we ignored topics
with the most prominent words like ‘day’, ‘great’, etc.). The
set of locations was constructed by selecting 14 top cities of
the UK and Ireland according to the total amounts of posted
tweets. The time span was divided into 78 week-long inter-
vals. Finally, a cube with dimensions 14 x 78 x 16 was built.

6.1.1  Verifying Expected Patterns

We check, on the one hand, how our system design sup-
ports the task types T1-T6 (Section 2.4), on the other hand,
whether it is effective in detecting expectable patterns and
known facts concerning people’s opinions about Brexit. The
exploration we conducted is illustrated in Fig. 10.

T1. Fig. 10a: We want to see and compare which topics
were popular in Glasgow and Dublin. The reason is that
these two cities are always projected close to each other in
the data selector regardless of the chosen feature vectors.
We take the time projection of the cube; then we click on the
cards of Dublin and Glasgow in the location view and
obtain the corresponding topic cards in the topic view.
These cards show us that the topics “scotland” and
“ireland” were the most popular in Glasgow and Dublin,
respectively. These are expected patterns, because people
are usually more concerned with local affairs. We also
observe that the topic “scotland” was quite popular in
Dublin. This means that the Twitter users in Ireland might
find the discussions concerning Scotland relevant also to
Ireland. However, we do not observe a reciprocally high
interest to the topic “ireland” in Glasgow.

943

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962

964



965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.24, NO.X, XXXXX2018

12: Fig. 10b: We want to see and compare the spatial dis-
tributions of the popularities of the topics “scotland” and
“ireland”. We select these two topics in the topic view and
obtain two new cards in the location view showing the spa-
tial distributions of the topic popularities represented by
the sizes of the circles. Not surprisingly, we observe that,
among all locations, the topic “scotland” was the most pop-
ular in Glasgow and Edinburgh while “ireland” was popu-
lar in Dublin. People in the other cities were not very much
interested in any of these two topics.

T3. Fig. 10c: We want to check whether the times of peaks
in topic popularity corresponds to the times of events these
topics are related to. This task does not involve the spatial
dimension; so, we take the space projection of the cube. We
select the topics “euref” and “trump”, which refer to the
British Brexit referendum and the current US president. In
the time view, we observe the popularity variations of these
two topics. As could be expected, the highest popularity of
“euref” was attained in the 7th week (19-26 June, 2016),
when the Brexit referendum was held. The popularity grad-
ually increased before that week and gradually decreased
in the following weeks; in the remaining times, it was quite
low. The topic “trump” had its highest popularity in the
27th week (6 June, 2016 to 13 June, 2016), which corresponds
to the beginning of the US presidential election. Interest-
ingly, this topic was also quite popular at the time of the
Brexit referendum and in the following weeks.

T4. Fig. 10d: In the time view, we select the 7th and 27th
weeks, in which “euref” and “trump”, respectively, had
their highest rankings. Two cards showing the popular-
ities of all topics in these two weeks are added to the topic
list. The words representing the topics “euref” and
“trump” have the largest font sizes corresponding to the
highest popularities of these topics in the respective
weeks, which is consistent with the previous observations
made in the time view. In addition, we observe that, apart
from the main topic “euref”, the topics “scotland”,
“remain”, “trump”, and “stopbrexit” were also quite pop-
ular in week 7, whereas week 27 was strongly dominated
by the topic “trump”.

T5. Fig. 10e: We want to look at the overall Twitter activi-
ties regardless of specific topics; therefore, we take the topic
projection of the cube. We select five large cities from differ-
ent parts of the studied territory and use the time view to
explore the temporal patterns of the aggregated popularity,
which reflects the general activity of the discussions in Twit-
ter. We see a peak of activity in the 7th week (June 20-26,
2016), when the Brexit referendum was held. It shows that
the overall number of tweets posted during the referendum
period was higher than in the other weeks, thus resulting in
a high aggregated popularity. We can also notice that the
temporal trends were very similar in all selected cities except
Dublin, where the Twitter activity sharply dropped down in
week 8 but then increased in weeks 14-15 (August 8-21,
2016), when the activities in the other cities were quite low.
The increase of the discussions in Dublin can be related to
events in the Northern Ireland, where on August 10 the first
and deputy first ministers sent an open letter to the UK prime
minister Theresa May concerning Brexit impact on the
Northern Ireland. Evidently, people in Ireland, in particular,
Dublin, are concerned about the affairs in the Northern

Ireland. These observations show that social media activities
increase in response to important social events [3].

T6. Fig. 10f: To check the slice-based functionality, we
take the cube slice corresponding to the topic “ge”, which
refers to the British general election. The election was
announced on April 18 (week 50) and held on June 8 (week
57). The time view shows us the popularity dynamics of
this topic in multiple selected cities. After a peak in the
week of election announcement, the activity decreased but
remained high and then raised to its highest values in weeks
56-57. We select the weeks 54-57 in the topic view. Four
cards showing the spatial distributions of the popularity of
“ge” in these weeks appear in the location list. Since the
topic had the highest popularity in London in all four
weeks, the spatial distribution maps exhibit high domina-
tion of London while the circles representing the values in
the other cities are too small for seeing differences. There-
fore, we exclude London from the selection and look at the
spatial patterns formed by the remaining cities. As could be
expected, there was a general increase of activities in all cit-
ies in the week of the election (week 57). In the preceding
weeks, some cities had relatively higher activities than
others; however, the activities in weeks 54 and 55 were not
very high in absolute values, as can be seen in the time
view. Week 56 differs from the others by having a high
peak of activity in Bournemouth, on the south of England.
We create a corresponding keyword view, which points at
an intensive media campaign for supporting the labor party.
Bournemouth is the location of the headquarters of the com-
pany JP Morgan known for its strong anti-Brexit position. In
the week before the general election, they announced that
the conservative party losing the general election would be
beneficial for the UK finances, which may explain the high
number of the pro-labor tweets.

This test has confirmed that, first, all task types are sup-
ported, second, they are performed in uniform ways by
applying the same interactive techniques in the different
views and, third, the techniques have the power to reveal
meaningful patterns.

6.1.2 Studying Temporal Evolution of a Topic

We select the space projection and the topic “trump” that
refers to the current US president, to analyze its temporal
evolution. Due to the strong association between US and
UK, a large number of tweets in this dataset discuss the
effects of US social events on the Brexit.

There are two peaks in the stream of the topic “trump”.
The first peak was in the period of the Brexit referendum.
We analyzed the corresponding keyword lists and did not
find any special keyword (apart from “trump”) except the
keywords related to the referendum. Hence, the first peak
was caused by the popularity accumulation from the large
number of tweets posted in that week. The second peak was
at the beginning of the US election (6 Nov, 2016 to 12 Nov,
2016). In the keyword view, several keywords related to the
election had higher prominences, such as “uselection”,
“electionnight”, and “electionday”. Like in the previous
examples, this confirms that social media activities are
highly related to to important social events. In the 33th
week (18 Dec, 2016 to 24 Dec, 2016), the keyword “win”
appeared, and the corresponding event was that Trump

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

1065

1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085



1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

1103

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

LI ET AL.: SEMANTICS-SPACE-TIME CUBE: A CONCEPTUAL FRAMEWORK FOR SYSTEMATIC ANALYSIS OF TEXTS IN SPACE AND... 13

T ma i

Fig. 11. Temporal evolution of topic “trump”.

won the election. We found the keyword “muslimban” in
the 39th week (29 Jan, 2017 to 4 Feb, 2017), one day after
Trump signed the executive order 13769, which prohibits
citizens of seven countries in the Middle East from entering
the United States within the next 90 days. The higher key-
word prominence indicated active discussions concerning
the order in the social media. In the 47th week (26 Mar, 2017
to 1 Apr, 2017), the keyword “article” appeared, which was
consistent with the news that the prime minister triggered
Article 50 of the Treaty on EU. In the 51th week (23 Apr,
2017 to 39 Apr, 2017) keywords about the election, such as
“ge” and “generalelection”, appeared again due to the
announcement of the British general election. In the 58th
week (11 Jun, 2017 to 17 Jun, 2017), we found many names
of countries and politicians, such as “russia”, “syria”,
“israel”, “usa”, “putin”, etc., which may be related to the
Trump’s press conference on June 14, 2017.

6.1.3 Exploring Competition of Topics

We compare the temporal trends of two topics with similar
meaning, “remain” and “stopbrexit”. We find (Fig. 12a) that
the popularity of the topic “remain” (the green stream) had
been higher than the topic “stopbrexit” (the pink stream)
during the first half of the period. Afterwards, the popularity
of the topic “stopbrexit” gradually increased and finally
exceeded the first one. The topic “stopbrexit”, evidently,
refers to the development of the Brexit process whereas the
topic “remain” refers more to making the Brexit decision.
For seeing more details, we create keyword views for differ-
ent weeks; the keyword views for the weeks 7 and 74 are
shown in Fig. 12a. In week 7, many keywords related to the
referendum and voting had higher prominence within the
topic “remain”, indicating a willingness to vote for Britain to
stay in EU. In week 74, the topic “stopbrexit” contained
many keywords related to Manchester, indicating some local

Fig. 12. Different popularity trends of “remain” (green) and “stopbrexit”
(pink): @) The whole territory, (b) slice for “Manchester”.
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Fig. 13. Interesting findings in respect to the spatial distributions of the
topic popularities.

events in Manchester. Therefore we selected the location
slice corresponding to Manchester and observed the corre-
sponding popularity variations of the two topics (Fig. 12b).
We found the same temporal trends as for all locations in
general, except for a more significant popularity difference
in week 74 (Oct 1 to Oct 7, 2017). By retrieving the related
information from the Internet, we learned that an organiza-
tion named stopbrexit https://www.stopbrexitmarch.com/
organized a march on October 1 2017 in Manchester, thus
causing the popularity burst. We also found the keyword
“march” in the keyword distribution. The increase of the
popularity of “stopbrexit” in week 70, which can be seen in
the time view in Fig. 12a, is related to a similar anti-Brexit
match that happened on September 9 in London. Hence, by
investigating the temporal variation patterns, we can find
references to important local events.

6.1.4 Interesting Findings Regarding the Spatial

Distribution

We take the time projection and generate location cards
showing the spatial distributions of the popularities of differ-
ent topics, as in Figs. 13a and 13b. We also generate topic
cards showing the topic popularities distribution in different
selected cities, as in Figs. 13c and 13d. In this way, we find
answers to interesting questions regarding space — topic
relations. A few examples are presented below.

Which City has the Highest Concerns about the Situation after
the Brexit?. We look at the spatial distribution of the popu-
larity of the topic “postbrexit” and see that the highest activ-
ity was in Dublin (Fig. 13a). We create a corresponding
keyword view (Fig. 13e), where we see such keywords as
“impact”, “market”, “discussing”, etc. We learn from litera-
ture that currently there is no actual border between North
Ireland and Ireland, but this situation may change after the
Brexit, which will seriously affect the trade between Ireland
and Britain. This explains the high concern about the topic
“postbrexit” in Dublin.

Which area has the Highest Opposition to the Brexit? We look
at the spatial distribution of the popularity of the topic
“brexitshambles” (Brexit Shambles), which reflects a dissat-
isfaction with the chaos caused by the Brexit. The topic was
the most popular in Ireland and Scotland; particularly,
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Fig. 14. Spatiotemporal dynamic of the topic “windy” extracted from
Storm Doris dataset. (a) Three selected cities. (b) Topic “windy”. (c)
Streams show the popularity trend of the three cities with respect to the
topic “windy”. (d) Weather forecast map that shows the wind movement
trends on 23th.

Glasgow had the highest value (Fig. 13b). The corresponding
keyword view contains the keywords “indyref” and “snp”,
which respectively refer to the Scotland independence refer-
endum and the party leading the independence campaign.

Which Topics were the Most Interesting to People in London?
The topic card presented in Fig. 13c shows us that the topic
“economy” received the highest attention in London. This
can be easily explained, since the Brexit has a high impact
on economy. Other topics, such as “bbcnews”, “postbrexit”,
“law”, etc., also received much attention. As London is the
capital of the UK and also the largest city, the London’s dis-
tribution of the topic popularities may be indicative of the
interests and priorities of the whole British society.

Which city was the Most Different from the others Regarding
the Topic Popularities? By comparing the topic cards of differ-
ent cities, we find that, indeed, the respective topic popular-
ities were quite similar to those in London. A single
exception is Bournemouth, where the most popular topic
was NHS (this is an abbreviation of the National Health Sys-
tem), and it strongly dominated all other topics (Fig. 13d). In
the corresponding keyword view (Fig. 13f), we observe a
very high prominence of the keyword ‘nhs’. The NHS topic
corresponds to the fears that the Brexit will have a very neg-
ative impact on the British public health system. This topic
appears also in the cards of the other cities, but its relative
popularity is much lower than in Bournemouth. The speci-
ficity of Bournemouth can be related to the fact that it is a
place of a major hospital belonging to the NHS Foundation.
The popularity of the NHS topic may reflect concerns of the
hospital employees and/or patients.

The examples from the Brexit case study demonstrate the
effectiveness of our approach for studying the relationships
between text semantics, space, and time.

6.2 Storm Doris Dataset

This case study demonstrates analysis at a small temporal
scale. Storm Doris hit Ireland and UK on February 23-24,
2017. During these two days, people actively shared their
storm-related experiences in social media. We retrieved the
messages containing such keywords as “storm”, “rain”,
“wind”, and “snow” in the texts or hashtags. In total, 30,000
tweets of about 25,000 users were collected. Most of these
tweets were posted in three cities, Dublin, Cardiff and Glas-
gow; so, we selected these cities for the analysis (Fig. 14a).
The time period was divided into 48 intervals of one hour
length. We utilized city-time aggregation for topic extrac-
tion, i.e., the tweets posted within one hour in a city were
merged to form a longer pseudo-document as the input to
the LDA algorithm (see Section 4.2.1). Compared to the
Brexit dataset, this dataset contains fewer topics, since most
tweets either mention the meteorological conditions or refer
to emergency notices and latest news, such as flight delays
and accidents leading to casualties. Therefore we selected 5
representative topics. Based on these selections, a cube of
3 x 48 x 5 was generated for the exploration.

Our goal is to trace the storm in the social media, simi-
larly to earlier studies related to other natural events [22],
[23]. Specifically, we would like to observe whether the
times of the popularity bursts of the storm-related topics in
different cities are consistent with the trajectory of the
storm. We want to check the hypothesis that people tend to
tweet immediately about their current experiences. We
know from news reports that heavy snow and rain occurred
only in North Britain whereas strong winds affected a larger
territory. Therefore, we take the slice of the topic “windy”
(Fig. 14b), which refers to the windy weather, to explore its
spatio-temporal dynamics. We find that the popularity of
the topic first peaked in Dublin at 7am on the 23th, then a
burst successively occurred in Cardiff in the following hour,
and finally a burst occurred in Glasgow at 1pm, as can be
seen in Fig. 14c. We marked the cities on a weather forecast
map, as in Fig. 14d. By sequentially connecting the cities,
we found that the sequence of the occurrences of the topic
popularity bursts is consistent with the wind directions and
storm movement. A video analyzing the spatial impacts of
Storm Doris can be found in https://www.metoffice.gov.
uk/barometer /uk-storm-centre/storm-doris/. We learned
from it that the wind was from the northwest to the south-
east, and Scotland was the region where strong wind
appeared the latest. This finding proves our hypothesis.

7 EXPERT FEEDBACK

For an additional evaluation of the potential usefulness of
our approach, we established a remote contact with an
expert from the Free University of Berlin, whose research
interest is political analysis, in particular, studying the rela-
tionships between politics and social media. Our goal was to
test whether our system can be helpful to the expert in her
professional research. We used a communication platform
supporting screen sharing to demonstrate the analysis of the
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Brexit data and explain the essentials of our approach. In the
course of the demonstration, we answered emerging expert’s
questions, which involved creating views that showed
requested information or interacting with already available
views. We asked the expert to make comments during the
demonstration and to provide an overall judgment after it.

The overall feedback was positive: “It is quite easy to
understand and the uniform organization of topic, space and time
information is impressive. In our research, we also addressed part
of the analysis tasks, such as analyzing evolutionary pattern of
topics (topic and time), the opinion distribution over different
locations (space and topic). But we didn’t have the tool to organize
in such way. The cube is a good summarize metaphor and extends
the capability of political analysis. It can be applied in multiple
fields in our domain.”

As to the visual design and interactive operations, the
expert said the the Relationship Explorer is not as easy-to-
understand as the Data Selector. However, she admitted
that the the design uniformity helped a lot in understanding
and learning the tool. She said: “The interface is very beautiful
and user-friendly. I can easily understand the Data Selector. The
Relationship Explorer is more complex for me, since I should
always keep the concept of the cube in my mind. The learning
curve of the Relationship Explorer is steep. When the user under-
stand the task scheme, the use of the Relationship Explore will
become easier, since all the tasks follow the same scheme.”

She also made some detailed comments, both positive and
negative: “The keyword view is very helpful, without it the popu-
larity variation is difficult to explain. The two measures are well
selected. I like the complete task definition, and to integrate them in
a tool is very convenient to use. We need to pay attention that the
number of specific mentioned keywords may not really reflect the
public opinions. For example, if I mention Stopbrexit, I may tweet
for being against Stopbrexit. I hope in the future you can provide
further supports on the detailed semantic analysis. ”

The expert expressed a desire to use our approach in her
political science research. She said: “We always met such prob-
lems: For political events, such as elections, we especially care
about the people’s caring topics in indecisive states in specific time
periods. I believe the proposed visual analytics can help a lot.”

Hence, the expert’s feedback was very encouraging while
pointing at some aspects requiring improvement.

8 DiscussION

In this paper, we describe an approach to exploring data
containing texts associated with spatial locations and times.
While we presented our approach by example of social
media data, it can be applied to data with similar structure
existing in other domains, for example, reports about inci-
dents, crimes, or technical failures of vehicles [45]. A specific
feature of our approach is the use of the data cube metaphor
for organizing data and in the design of the interactive visual
interface. This metaphor implies uniform treatment of differ-
ent data components. On this basis, we developed the idea of
uniformity in application to the visualization and interaction
design with the purpose to mitigate the complexity of the
data and the exploratory tasks. The cube metaphor also
allowed us to define systematically the space of possible
tasks in data exploration. In the following, we discuss differ-
ent aspects of our approach.

Topic Extraction. We utilize topic modeling, specifically,
LDA, to represent unstructured texts in a structured way.
We aggregate texts with similar semantics into longer
pseudo-documents to deal with the problem of term scar-
city in short texts. Another problem is setting the number of
topics to extract, which may be difficult to estimate. As a
viable approach, we propose to run LDA several times with
different parameter settings and present the resulting topics
in a projection view exhibiting their similarities, allowing
the analyst to select a non-redundant set of clearly interpret-
able topics relevant to the analysis goals.

Measure Calculation. In our research, we used two heuris-
tically defined measures, namely, topic popularity score
and keyword weight vector. It is also possible to define and
use other measures, depending on the specifics of the appli-
cation domain and the goals of the analysis. Thus, the feed-
back of the expert in political analysis (Section 7) indicated
the usefulness of a measure reflecting people’s attitudes
towards the topics (which would not be needed in analyz-
ing crime or incident reports). As mentioned in Section 2.3,
such a measure could be defined based on outcomes of text
sentiment analysis. Inclusion of additional measures in the
cube, in principle, does not affect the overall approach, but
the visual interface may need to be extended for presenting
these measures.

Task Completeness. We have defined the complete system
of analysis tasks that may refer to data organized in an
SSTC. However, this includes only tasks applicable to
aggregated data but not tasks that require dealing with
detailed text-time-space data, such as the task of cluster
detection addressed in earlier works [22], [23], [32].

Information Loss. Since cube construction involves dis-
cretization (binning) and aggregation of original data, it
inevitably entails information loss. On the other hand,
aggregation allows the analyst to disregard minor details
and supports abstractive grasp of essential features. As with
any kind of aggregation, the amount of information that is
lost depends on the granularity, i.e., the sizes of the bins
that are used. Suitable bin sizes are chosen depending on
the scope and variation of the data, the scale of the phenom-
enon that is studied, and the required scale of analysis.
Thus, in our two case studies, we used weekly time inter-
vals for studying a long-term phenomenon and hourly
intervals for a short-living phenomenon.

Visualization Effectiveness. We have designed a visual
interactive interface that supports all previously defined
task types, as was proved in the case studies. Moreover, we
developed and consistently applied the principle of unifor-
mity, so that different types of tasks can be performed in a
uniform way. The uniformity as a means of decreasing sys-
tem complexity and reducing the learning effort received
positive comments in the expert evaluation. However, the
evaluation revealed some issues concerning the way in
which the uniformity principle had been implemented.
These issues are discussed in the following paragraph.

Simplicity and Ease of use. Our underlying idea in design-
ing the user interface was explicit use of the cube metaphor
and the concepts of cube dimension, slice, and projection.
The metaphor was even emphasized by the icons appearing
in the history panel. We expected that this idea will promote
understanding of the system and make it easier to use.
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However, the expert evaluation showed that thinking of
data in terms of the cube metaphor may not be as obvious
and easy to a user as we expected. Hence, while the unifor-
mity principle is useful and should be preserved, it is
appropriate to find a different approach to implementing it
in the UI design. Currently, we consider an idea of organiz-
ing the Ul based on the six task types, i.e., the analyst selects
the type of task he/she is going to perform from a task list.
For this purpose, the tasks need to be given short but well-
understandable and unambiguous titles. It would be good
to design such titles in communication with several ana-
lysts, preferably from different domains. This would
include testing the possibility to title the tasks in general,
domain-independent terms.

Performance. We divided the workflow into two phases. The
first includes topic extraction and data cube construction,
which are computationally intensive and time consuming
operations. The second is interactive data exploration. The sep-
aration of the data preparation from the exploration minimizes
the CPU and memory usage. Moreover, our system establishes
various references among data items using hash structures for
accessing the cube components. The initialization of the cube
(i.e., preparation to the interactive exploration) takes several
seconds and may become longer as the numbers of elements
increase. The initialization step, however, improves the system
performance during the exploration phase and enables real
time responses to interactive operations.

Scalability. While the amount of original data may be
huge, it is substantially reduced in constructing the cube
due to aggregation. Generally, a cube is a scalable structure,
which makes it widely used. Still, when cube dimensions
consist of large numbers of elements, the cube may be too
“heavy” for keeping in the main memory and interactive
exploration. This problem can be mitigated by applying the
Data Selector for selecting sub-cubes for further exploration
in the Relationship Explorer. As a data overview, the Data
Selector can accommodate a large number of objects, from
which analysts can select subsets of interest. What concerns
the visualization scalability, the capacity of the displays to
show multiple components (such as cards) simultaneously
is obviously limited. While all views include scroll bars, it
may be inconvenient and distracting from the analysis to
scroll repeatedly for finding items of interest. This problem
is alleviated by meaningful ordering of the items within
views and by providing the possibilities for removing and
adding items according to the current focus.

Practical Usefulness. SSTC has practical utility first of all as
a data structure suitable for representing the distribution of
text semantics over space and time and thereby enabling
analysis tasks that have not been supported before. It is
worth noting that this data structure allows application of
the previously proposed approaches to performance opti-
mization, such as NanoCubes [40]. The SSTC is also useful
as a conceptual model, as it provides a ground for a system-
atic and comprehensive definition of the space of possible
analysis tasks and, simultaneously, determines the database
operations that are necessary for supporting these tasks.
However, as discussed above, SSTC may be less suitable as
a metaphor for organizing the visual user interface. This
conclusion from our study may be useful to other research-
ers and visualization designers.

9 CONCLUSION

This paper has presented a comprehensive approach to
exploring data with spatial, temporal and textual compo-
nents. The approach can be summarized as follows.

1)  Adata cube structure is used for organizing such data.
We describe how the original data are transformed
and organized in a semantics-space-time cube.

2) Topic modeling is used for converting unstructured
texts into a structured representation. We propose a
viable approach (based on using an LDA ensemble)
to compensating for parameter impact and extract-
ing a meaningful and useful set of topics.

3) Based on the cube structure, the space of possible
exploratory analysis tasks for topic-space-time data
is systematically and comprehensively defined.

4)  The principle of design uniformity aims at support-
ing all task types in a uniform way to moderate the
intrinsic complexity.

5) We demonstrate a possible implementation of the
uniformity principle in a visualization system design.

We tested the system implementing our approach in two
case studies to confirm that all task types are supported and
the uniformity principle works appropriately. We also
undertook expert evaluation for testing the usability aspects
of the approach and received valuable feedback, which will
be taken into account in the further work. In particular,
since users may have difficulties with explicit use of the
cube metaphor, we shall try to create a different variant of
the UI design incorporating the uniformity principle, since
this principle was acknowledged as useful and important.
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